Monday, July 10, 2017

Deep Learning at Pennsylvania State University

Integrating Deep-learned Models and Photography Idea Retrieval

ABSTRACT: Retrieving photography ideas corresponding to a given location facilitates the usage of smart cameras, where there is a high interest among amateurs and enthusiasts to take astonishing photos at anytime and in any location. Existing research captures some aesthetic techniques such as the rule of thirds, triangle, and perspectiveness, and retrieves useful feedbacks based on one technique. However, they are restricted to a particular technique and the retrieved results have room to improve as they can be limited to the quality of the query. There is a lack of a holistic framework to capture important aspects of a given scene and give a novice photographer informative feedback to take a better shot in his/her photography adventure. This work proposes an intelligent framework of portrait composition using our deep-learned models and image retrieval methods. A highly-rated web-crawled portrait dataset is exploited for retrieval purposes. Our framework detects and extracts ingredients of a given scene representing as a correlated hierarchical model. It then matches extracted semantics with the dataset of aesthetically composed photos to investigate a ranked list of photography ideas, and gradually optimizes the human pose and other artistic aspects of the composed scene supposed to be captured. The conducted user study demonstrates that our approach is more helpful than the other constructed feedback retrieval systems.

Tuesday, May 9, 2017

FORK-JOIN QUEUE MODELING AND OPTIMAL SCHEDULING IN PARALLEL PROGRAMMING FRAMEWORKS

ABSTRACT
MapReduce framework is widely used to parallelize batch jobs since it exploits a high degree of multi-tasking to process them. However, it has been observed that when the number of servers increases, the map phase can take much longer than expected. This thesis analytically shows that the stochastic behavior of the servers has a negative effect on the completion time of a MapReduce job, and continuously increasing the number of servers without accurate scheduling can degrade the overall performance. We analytically model the map phase in terms of hardware, system, and application parameters to capture the effects of stragglers on the performance. Mean sojourn time (MST), the time needed to sync the completed tasks at a reducer, is introduced as a performance metric and mathematically formulated. Following that, we stochastically investigate the optimal task scheduling which leads to an equilibrium property in a datacenter with different types of servers. Our experimental results show the performance of the different types of schedulers targeting MapReduce applications. We also show that, in the case of mixed deterministic and stochastic schedulers, there is an optimal scheduler that can always achieve the lowest MST.

KEYWORDS
Stochastic processes, Computational model, Delayed Tailed Distribution, Optimal scheduling, Cloud computing, Synchronization, Queuing Theory, MapReduce, Stochastic Modeling, Performance Evaluation, Fork-Join Queue.