Saturday, April 11, 2020

A Public Key Encryption Algorithm for Network Security

Enhanced Public Key Encryption Algorithm for Security of Network

Abstract -- Network security has become more important to personal computer users, organizations, and the military. With the advent of the internet,
security became a major concern and the history of security allows a better understanding of the emergence of security technology. The internet
structure itself allowed for many security threats to occur. When the architecture of the internet is modified it can reduce the possible attacks that can be
sent across the network. Knowing the attack methods, allows for the appropriate security to emerge. By means of firewalls and encryption mechanisms
many businesses secure themselves from the internet. The businesses create an "intranet" to remain connected to the internet but secured from
possible threats. Data integrity is quite a issue in security and to maintain that integrity we tends to improve as to provides the better encryption
processes for security. In our proposed work we will make encryption harder with enhanced public key encryption protocol for security and will discuss
the applications for proposed work. We will enhance the hardness in security by improving the Diffie-Hellman encryption algorithm by making changes or
adding some more security codes in current algorithm.

REFERENCES
[1] Farhat, Farshid, Somayeh Salimi, and Ahmad Salahi. "Private
Identification, Authentication and Key Agreement Protocol with
Security Mode Setup." IACR Cryptology ePrint Archive 2011.
[2] Emmanuel Bresson, Olivier Chevassut, David
Pointcheva, Jean-Jacques Quisquater, "Authenticated
Group Diffie-Hellman Key Exchange", Computer and
Communication Security- proc of ACM CSS'01,
Philadelphia, Pennsylvania, USA, Pages 255-264, ACM Press,
November 5-8, 2001.
[3] Mario Cagaljm, Srdjan Capkun and Jean-Pierre
Hubaux," Key agreement in peer-to-peer wireless
networks", Ecole Polytechnique F´ed´erale de Lausanne
(EPFL), CH-1015 Lausanne.
[4] Michel Abdalla, Mihir Bellare, Phillip Rogaway,"
DHIES: An encryption scheme based on the Diffie-Hellman
Problem", September 18, 2001.
[5] Jean-Fran¸cois Raymond, Anton Stiglic," Security Issues
in the Diffie-Hellman Key Agreement Protocol".
[6] Whitfield Diffie and Martin E. Hellman," New Directions
in Cryptography", invited paper.
[7] F. Lynn Mcnulty," Encryption's importance to
economic and infrastructure security" in 2002.
[8] Tony Chung and Utz Roedig," Poster Abstract: DHBKEY -A Diffie-Hellman Key Distribution Protocol for
Wireless Sensor Networks", Infolab21, Lancaster University,
UK.
[9] A. Chandrasekar, V.R. Rajasekar, V. Vasudevan,"
Improved Authentication and Key Agreement Protocol
Using Elliptic Curve Cryptography" in 2006.
[10] SANS Institute Info Sec Reading Room," A Review of
the Diffie-Hellman Algorithm and its use in Secure
Internet Protocols".
*11+ Paul C. Kocher, "Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems", Cryptography
Research, Inc. 607 Market Street, 5th Floor, San Francisco, CA
94105, USA.
[12] Brita VesterĂ¥s," Analysis of Key Agreement Protocols",
Mtech Thesis, Department of Computer Science and Media
Technology, Gjovik University College, 2006
[13] (2006) The YouTube website [online]. Available:
[14] (2008) The YouTube website [online]. Available:
[15] (2011) The Wikipedia website [online]. Available:
[16] (2009) The Wikipedia website [online]. Available:
xchange.

Security Weaknesses in PGP

Academic Endeavors at Pennsylvania State University

Wednesday, March 25, 2020

System and methods for UICC-based secure communication


ABSTRACT
A system that incorporates the subject disclosure may include, for example, instructions which when executed cause a device processor to perform operations comprising sending a service request to a remote management server; receiving from the management server an authentication management function and an encryption key generator for execution by a secure element and an encryption engine for execution by a secure device processor, sending a request to establish a communication session with a remote device; and communicating with the remote device via a channel established using an application server. The secure element and the secure device processor authenticate each other using a mutual authentication keyset. The secure element, the secure device processor and the device processor each have a security level associated therewith; the security level associated with the secure device processor is intermediate between that of the secure element and that of the device processor. Other embodiments are disclosed.

Reference
1"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Characteristics of the Universal Subscriber Identity Module (USIM) application", Release 11, 2012.
2"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Remote APDU Structure for (U)SIM Toolkit applications", Release 10, 2012.
3"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Secured packet structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications", Release 10, 2012.
4"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; UICC-terminal interface; Physical and logical characteristics", Release 10, 2011.
5"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Universal Subscriber Identity Module (USIM) Application Toolkit (USAT)", Release 11, 2012.
6"GlobalPlatform Card Confidential Card Content Management Card Specification v2.2-Amendment A", 2011.
7"GlobalPlatform Card Contactless Services Card Specification v2.2-Amendment C", 2012.
8"GlobalPlatform Card Remote Application Management over HTTP Card Specification v2.2-Amendment B", 2012.
9"GlobalPlatform Card Security Upgrade for Card Content Management Card Specification v 2.2-Amendment E", 2011.
10"GlobalPlatform Card Specification", Version 2.2.1, 2011.
11"GlobalPlatform Card Technology Secure Channel Protocol 03 Card Specification v 2.2-Amendment D", 2009.
12"GlobalPlatform Device Secure Element Remote Application Management", May 2011.
13"GlobalPlatform Device Technology Secure Element Access Control", Version 1.0, May 2012.
14"GlobalPlatform Device Technology TEE System Architecture", Dec. 2011.
15"GlobalPlatform Key Management System", Functional Requirements, Nov. 2003.
16"GlobalPlatform System Messaging Specification for Management of Mobile-NFC Services", Feb. 2011.
17"Over-The-Air Platform Security Review", Mandiant Intelligent Information Security, 6 pgs., Aug. 17, 2010.
18
Farhat, Farshid, Somayeh Salimi, and Ahmad Salahi. "Private Identification, Authentication and Key Agreement Protocol with Security Mode Setup" IACR Cryptology ePrint Archive 2011 (2011): 45.
19"Reprogrammable SIMs: Technology, Evolution and Implications", csmg, Sep. 25, 2012.
20
"Secure Authentication for Mobile Internet Services"-Sim Alliance, Dec. 2011 http://simalliance.org/wp-content/uploads/2015/03/12-01-01-WP-SIMallianceSecureAuthentication-EN-V1.1.pdf.
21"Smart Cards; Card Application Tookit (CAT)", Release 11, 2012.
22"Smart Cards; ETSI numbering system for telecommunication application providers", Release 11, 2011.
23"Smart Cards; Machine to Machine UICC; Physical and logical characteristics", Release 9, 2011.
24"Smart Cards; Remote APDU structure for UICC based applications", Release 11, 2012.
25"Smart Cards; Secured packet structure for UICC based applications", Release 11, 2012.
26"Smart Cards; Security mechanisms for UICC based Applications-Functional requirements", Release 8, 2008.
27"Smart Cards; UICC Application Programming Interface (UICC API) for Java Card(TM)", Release 9, 2012.
28"Smart Cards; UICC Application Programming Interface (UICC API) for Java Card™", Release 9, 2012.
29"Smart Cards; UICC-Terminal Interface; Physical and logical characteristics", Release 10, 2011, 179 pages.
30"The OTA Platform in the World of LTE", 14 pgs., Jan. 2011.
31"Universal Mobile Telecommunications System (UMTS); UICC-terminal interface; Physical and logical characteristics", Release 10, 2011.
32Chen, "An efficient end-to-end security mechanism for IP multimedia subsystem", Computer Communications, 2008, vol. 31.18, pp. 4259-4268.
33Dodson, Ben et al., "Snap2Pass: Consumer-Friendly Challenge-Response Authentication with a Phone", http://prpl.stanford.edu/papers/soups10j.pdf, Apr. 30, 2010.
34Global Platform, "Secure Element Remote Application Management", Version 1.0, May 2011.
35Imhontu, et al., "A survey on near field communication in mobile phones & PDAs", Dissertation Halmstad University, 2010. http://hh.diva-portal.org/smash/get/diva2:385433/FULLTEXT01.
36Kim, Jong-Min et al., "A Study of Coupons issuance System Considering of User Convenience Based on NFC", 3rd International Conference on Computer Science and Information Technology (ICCSIT'2013) Jan. 4-5, 2013 Bali (Indonesia). http://psrcentre.org/images/extraimages/113118.pdf.
37Kounelis, Ioannis et al., "Secure Middleware for Mobile Phones and UICC Applications", Mobile Wireless Middleware, Operating Systems, and Applications, Springer Berlin Heidelberg, 2012, 143-152.
38Kounelis, Ioannis et al., "Security of service requests for cloud based m-commerce", MIPRO, 2012 Proceedings of the 35th International Convention, IEEE, 2012.
39Meyerstein, et al., "Security Aspects of Smart Cards vs. Embedded Security in Machine-to-Machine (M2M) Advanced Mobile Network Applications", InterDigital Communications Corporation LLC, First International ICST Conference: MobiSec 2009, Security and Privacy in Mobile Information and Communication Systems, p. 214-225, Jun. 3-5, 2009.
40Nagalakshmi, et al., "Modified Protocols for Internet Key Exchange (IKE) Using Public Encryption and Signature Keys", Information Technology: New Generations (ITNG), 2011 Eighth International Conference on, 2011, pp. 376, 381.
41Zhang, et al., "Cryptographic Key Agreement Protocol Simulation", Semantics Knowledge and Grid (SKG), 2010 Sixth International Conference on, 2010, pp. 418, 419.